(b) freedom of thought, belief, opinion and expression, including freedom of the press and other media of communication;
(c) freedom of peaceful assembly; and
(d) freedom of association.
Everyone has the right to life, liberty and security of the person and the right not to be deprived thereof except in accordance with the principles of fundamental justice.
Before purchasing any product(s) from this site you agree that:
You are taking your health into your own hands;
You have done and will continue to do your own research; and
You do not hold this website or its' affiliates responsible for your health.
Everyone has the following fundamental freedoms:
(a) freedom of conscience and religion;
(b) freedom of thought, belief, opinion and expression, including freedom of the press and other media of communication;
(c) freedom of peaceful assembly; and
(d) freedom of association.
Everyone has the right to life, liberty and security of the person and the right not to be deprived thereof except in accordance with the principles of fundamental justice.
Before purchasing any product(s) from this site you agree that:
You are taking your health into your own hands;
You have done and will continue to do your own research; and
You do not hold this website or its' affiliates responsible for your health.
Everyone has the following fundamental freedoms:
(a) freedom of conscience and religion;
(b) freedom of thought, belief, opinion and expression, including freedom of the press and other media of communication;
(c) freedom of peaceful assembly; and
(d) freedom of association.
Everyone has the right to life, liberty and security of the person and the right not to be deprived thereof except in accordance with the principles of fundamental justice.
Before purchasing any product(s) from this site you agree that:
You are taking your health into your own hands;
You have done and will continue to do your own research; and
You do not hold this website or its' affiliates responsible for your health.
Photosynthesis takes in the carbon dioxide produced by all breathing organisms and reintroduces oxygen into the atmosphere.
Photosynthesis is the process used by plants, algae and certain bacteria to harness energy from sunlight and turn it into chemical energy. Here, we describe the general principles of photosynthesis and highlight how scientists are studying this natural process to help develop clean fuels and sources of renewable energy.
Types of photosynthesis
There are two types of photosynthetic processes: oxygenic photosynthesis and anoxygenic photosynthesis. The general principles of anoxygenic and oxygenic photosynthesis are very similar, but oxygenic photosynthesis is the most common and is seen in plants, algae and cyanobacteria.
During oxygenic photosynthesis, light energy transfers electrons from water (H2O) to carbon dioxide (CO2), to produce carbohydrates. In this transfer, the CO2 is "reduced," or receives electrons, and the water becomes "oxidized," or loses electrons. Ultimately, oxygen is produced along with carbohydrates.
Oxygenic photosynthesis functions as a counterbalance to respiration by taking in the carbon dioxide produced by all breathing organisms and reintroducing oxygen to the atmosphere.
On the other hand, anoxygenic photosynthesis uses electron donors other than water. The process typically occurs in bacteria such as purple bacteria and green sulfur bacteria, which are primarily found in various aquatic habitats.
"Anoxygenic photosynthesis does not produce oxygen — hence the name," said David Baum, professor of botany at the University of Wisconsin-Madison. "What is produced depends on the electron donor. For example, many bacteria use the bad-eggs-smelling gas hydrogen sulfide, producing solid sulfur as a byproduct."
Though both types of photosynthesis are complex, multistep affairs, the overall process can be neatly summarized as a chemical equation.
Here, six molecules of carbon dioxide (CO2) combine with 12 molecules of water (H2O) using light energy. The end result is the formation of a single carbohydrate molecule (C6H12O6, or glucose) along with six molecules each of breathable oxygen and water.
Similarly, the various anoxygenic photosynthesis reactions can be represented as a single generalized formula:
CO2 + 2H2A + Light Energy → [CH2O] + 2A + H2O
The letter A in the equation is a variable and H2A represents the potential electron donor. For example, A may represent sulfur in the electron donor hydrogen sulfide (H2S), explained Govindjee and John Whitmarsh, plant biologists at the University of Illinois at Urbana-Champaign, in the book "Concepts in Photobiology: Photosynthesis and Photomorphogenesis" (Narosa Publishers and Kluwer Academic, 1999).
The photosynthetic apparatus
The following are cellular components essential to photosynthesis.
Pigments
Pigments are molecules that bestow color on plants, algae and bacteria, but they are also responsible for effectively trapping sunlight. Pigments of different colors absorb different wavelengths of light. Below are the three main groups.
Chlorophylls: These green-colored pigments are capable of trapping blue and red light. Chlorophylls have three subtypes, dubbed chlorophyll a, chlorophyll b and chlorophyll c. According to Eugene Rabinowitch and Govindjee in their book "Photosynthesis"(Wiley, 1969), chlorophyll a is found in all photosynthesizing plants. There is also a bacterial variant aptly named bacteriochlorophyll, which absorbs infrared light. This pigment is mainly seen in purple and green bacteria, which perform anoxygenic photosynthesis.
Carotenoids: These red, orange or yellow-colored pigments absorb bluish-green light. Examples of carotenoids are xanthophyll (yellow) and carotene (orange) from which carrots get their color.
Phycobilins: These red or blue pigments absorb wavelengths of light that are not as well absorbed by chlorophylls and carotenoids. They are seen in cyanobacteria and red algae.
Plastids
Photosynthetic eukaryotic organisms contain organelles called plastids in their cytoplasm. The double-membraned plastids in plants and algae are referred to as primary plastids, while the multiple-membraned variety found in plankton are called secondary plastids, according to an articlein the journal Nature Education by Cheong Xin Chan and Debashish Bhattacharya, researchers at Rutgers University in New Jersey.
Plastids generally contain pigments or can store nutrients. Colorless and nonpigmented leucoplasts store fats and starch, while chromoplasts contain carotenoids and chloroplasts contain chlorophyll, as explained in Geoffrey Cooper's book, "The Cell: A Molecular Approach" (Sinauer Associates, 2000).
Photosynthesis occurs in the chloroplasts; specifically, in the grana and stroma regions. The grana is the innermost portion of the organelle; a collection of disc-shaped membranes, stacked into columns like plates. The individual discs are called thylakoids. It is here that the transfer of electrons takes place. The empty spaces between columns of grana constitute the stroma.
Advertisement
Chloroplasts are similar to mitochondria, the energy centers of cells, in that they have their own genome, or collection of genes, contained within circular DNA. These genes encode proteins essential to the organelle and to photosynthesis. Like mitochondria, chloroplasts are also thought to have originated from primitive bacterial cells through the process of endosymbiosis.
"Plastids originated from engulfed photosynthetic bacteria that were acquired by a single-celled eukaryotic cell more than a billion years ago," Baum told Live Science. Baum explained that the analysis of chloroplast genes shows that it was once a member of the group cyanobacteria, "the one group of bacteria that can accomplish oxygenic photosynthesis."
In their 2010 article, Chan and Bhattacharya make the point that the formation of secondary plastids cannot be well explained by endosymbiosis of cyanobacteria, and that the origins of this class of plastids are still a matter of debate.
Antennae
Pigment molecules are associated with proteins, which allow them the flexibility to move toward light and toward one another. A large collection of 100 to 5,000 pigment molecules constitutes "antennae," according to an article by Wim Vermaas, a professor at Arizona State University. These structures effectively capture light energy from the sun, in the form of photons.
Ultimately, light energy must be transferred to a pigment-protein complex that can convert it to chemical energy, in the form of electrons. In plants, for example, light energy is transferred to chlorophyll pigments. The conversion to chemical energy is accomplished when a chlorophyll pigment expels an electron, which can then move on to an appropriate recipient.
Reaction centers
The pigments and proteins, which convert light energy to chemical energy and begin the process of electron transfer, are known as reaction centers.
Light-dependent reactions (also called light reactions): When a photon of light hits the reaction center, a pigment molecule such as chlorophyll releases an electron.
"The trick to do useful work, is to prevent that electron from finding its way back to its original home," Baum told Live Science. "This is not easily avoided, because the chlorophyll now has an 'electron hole' that tends to pull on nearby electrons."
The released electron manages to escape by traveling through an electron transport chain, which generates the energy needed to produce ATP (adenosine triphosphate, a source of chemical energy for cells) and NADPH. The "electron hole" in the original chlorophyll pigment is filled by taking an electron from water. As a result, oxygen is released into the atmosphere.
Advertisement
Light-independent reactions (also called dark reactions and known as the Calvin cycle): Light reactions produce ATP and NADPH, which are the rich energy sources that drive dark reactions. Three chemical reaction steps make up the Calvin cycle: carbon fixation, reduction and regeneration. These reactions use water and catalysts. The carbon atoms from carbon dioxide are “fixed,” when they are built into organic molecules that ultimately form three-carbon sugars. These sugars are then used to make glucose or are recycled to initiate the Calvin cycle again.
Photosynthesis in the future
Photosynthetic organisms are a possible means to generate clean-burning fuels such as hydrogen or even methane. Recently, a research group at the University of Turku in Finland, tapped into the ability of green algae to produce hydrogen. Green algae can produce hydrogen for a few seconds if they are first exposed to dark, anaerobic (oxygen-free) conditions and then exposed to light The team devised a way to extend green algae's hydrogen production for up to three days, as reported in their 2018 study published in the journal Energy & Environmental Science.
Scientists have also made advances in the field of artificial photosynthesis. For instance, a group of researchers from the University of California, Berkeley, developed an artificial system to capture carbon dioxide using nanowires, or wires that are a few billionths of a meter in diameter. The wires feed into a system of microbes that reduce carbon dioxide into fuels or polymers by using energy from sunlight. The team published its design in 2015 in the journal Nano Letters.
Advertisement
In 2016, members of this same group published a study in the journal Science that described another artificial photosynthetic system in which specially engineered bacteria were used to create liquid fuels using sunlight, water and carbon dioxide. In general, plants are only able to harness about one percent of solar energy and use it to produce organic compounds during photosynthesis. In contrast, the researchers' artificial system was able to harness 10 percent of solar energy to produce organic compounds.
Continued research of natural processes, such as photosynthesis, aids scientists in developing new ways to utilize various sources of renewable energy. Seeing as sunlight, plants and bacteria are all ubiquitous, tapping into the power of photosynthesis is a logical step for creating clean-burning and carbon-neutral fuels.